Properties of the calcium-activated chloride current in heart
نویسندگان
چکیده
We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.
منابع مشابه
The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa
Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...
متن کاملExpression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart.
Bestrophins are a novel family of proteins that encode calcium-activated chloride channels. In this study we establish that Bestrophin transcripts are expressed in the mouse and human heart. Native mBest3 protein expression and localization in heart was demonstrated by using a specific polyclonal mBest3 antibody. Immunostaining of isolated cardiac myocytes indicates that mBest3 is present at th...
متن کاملEffect of Concentration of Cations on Activated Sludge Properties and Membrane Fouling in Membrane Bioreactors for Wastewater Treatment
This paper presents the results of an investigation on the effects of concentration of cations on activated sludge properties and membrane fouling in submerge membrane bioreactors. The working volume of the experimental setup was two liters. The cellulose acetate membrane was immersed in the bioreactor. The flocculability, settling properties and fouling propensity of activated sludge was measu...
متن کاملCharacterization of outward potassium current in embryonic chick heart cells.
AIM To characterize a voltage-dependent outward K+ current in cultured heart cells of 14-16-day-old embryos of yellow chick. METHODS The patchclamp technique in the whole-cell configuration was used. RESULTS The kinetics and the pharmacology of the outward K+ current in our cell mold were different from those described in white chick. Like the calcium-activated K+ current, blocker of calciu...
متن کاملI NaCa and I Cl(Ca)contribute to isoproterenol-induced delayed afterdepolarizations in midmyocardial cells.
The contributions of electrogenic sodium/calcium exchange current ( I NaCa), calcium-activated chloride conductance [ I Cl(Ca)], and calcium-activated nonselective cation conductance to delayed afterdepolarizations (DAD) were examined. Nonselective cation channels were absent in canine M cells, since inhibition of I NaCa and I Cl(Ca)eliminated all calcium-activated currents without abolishing c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 99 شماره
صفحات -
تاریخ انتشار 1992